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Abstract

We show how to generate coupled KdV hierarchies from Stäckel separable
systems of Benenti type. We further show that the solutions of these Stäckel
systems generate a large class of finite-gap and rational solutions for cKdV
hierarchies. Most of these solutions are new.

PACS numbers: 02.30.Ik, 45.20.Jj
Mathematics Subject Classification: 37K10, 37K05, 35Q53, 70H06, 70H20

1. Introduction

In [1], we presented a systematic method of passing from Stäckel separable systems to infinite
hierarchies of commuting nonlinear evolutionary PDEs. We presented the idea in a concrete
case of Stäckel systems of Benenti type. In this paper we recognize the obtained hierarchies as
the well-known coupled Korteweg–de Vries (cKdV) hierarchies of Antonowicz and Fordy [2]
written in a different representation. We also clarify and significantly simplify the approach
developed in [1]. The main idea of the paper is however to present a new method of generating
solutions of soliton hierarchies from solutions of the related Stäckel systems.

From the very beginning of development of the theory of integrable systems in the late
1960s major efforts have been put into constructing various ways of finding their solutions.
Among many others, a possible way of finding solutions of integrable systems is through
various kinds of symmetry reduction, where one starts from an infinite-dimensional integrable
system and obtains after such reduction an integrable ODE. If one then succeeds in solving this
ODE (for example by finding separation coordinates in the case of Hamiltonian systems) one
can then reconstruct the corresponding particular solutions of the integrable PDE. This method
originated in [3] and has been developed in [2, 4, 5] and later in a large number of papers.
In this paper, we present an opposite approach in the sense that we start with large classes of
Stäckel systems written in separation coordinates so that their solutions are explicitly known
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and in few steps we construct from these Stäckel systems an infinite hierarchy of commuting
evolutionary PDEs while the solutions of the considered Stäckel systems become particular
multi-time solutions of the systems of the obtained hierarchy. In this way we produce both
well-known and new finite-gap-type solutions of the KdV hierarchy as well as new rational
and finite-gap solutions of cKdV hierarchies. In many cases this method also leads to implicit
solutions of cKdV hierarchies.

Rational solutions of KdV were first obtained in [6]. In [7] it has been demonstrated that
the rational solutions of KdV originate as long-wave limit (as the wave number k → 0) of
multi-soliton solutions, obtained in this case directly through bilinear method of Hirota. In [8]
rational solutions of KdV and other soliton equations have been obtained through the Painleve
property. One can also produce rational solutions of KdV by using Yablonskii–Vorob’ev
polynomials [9]. Our method is novel in that it is based on a different principle, it produces
multi-time solutions (solutions that contain an arbitrary number of times of the hierarchy) and
moreover it produces rational solutions of coupled (multi-component) hierarchies, which is to
our knowledge not present in the literature.

This paper is organized as follows. In section 2 we briefly describe the starting point of
our considerations, that is Stäckel separable systems of Benenti type, including their general
solution. In section 3 we relate with our Stäckel systems a class of weakly-nonlinear semi-
Hamiltonian systems (i.e. a class of hydrodynamic-type systems) that are reductions of the
so-called universal hierarchy [10]. These systems are in our formulation defined by Killing
tensors of Stäckel metrics. In section 4 we explicitly construct hierarchies of commuting
evolutionary PDEs and present a transformation that maps these hierarchies onto the well-
known cKdV hierarchies of Antonowicz and Fordy [2]. This section contains the main result of
this paper, i.e. theorem 8, that produces large families of solutions to our coupled hierarchies.
Finally, section 5 is devoted to studying specific classes of solutions that we call zero-energy
solutions that contain both rational and implicit solutions of our hierarchies. We also discuss
how our solutions are related to what can be found in the literature.

2. Stäckel systems of Benenti type

Let us consider a set of canonical (Darboux) coordinates (λ, μ) = (λ1 . . . , λn, μ1, . . . , μ1)

on a 2n-dimensional Poisson manifold M. Relations of the form

ϕi(λi, μi, a1, . . . , an) = 0, i = 1, . . . , n, ai ∈ R (1)

(each involving only one pair λi, μi of canonical coordinates) are called separation relations
[11] provided that det

(
∂ϕi

∂aj

) �= 0. Resolving (locally) equations (1) with respect to ai we obtain

ai = Hi(λ, μ), i = 1, . . . , n (2)

with some new functions (Hamiltonians) Hi(λ, μ) that in turn define n canonical Hamiltonian
systems on M:

λti = ∂Hi

∂μ
, μti = −∂Hi

∂λ
, i = 1, . . . , n (3)

(here and in what follows the subscript denotes derivative with respect to the subscript variable).
From this setting it follows immediately that the Hamiltonians Hi Poisson commute. The
corresponding Hamilton–Jacobi equations for all Hamiltonians Hi are separable in the (λ, μ)-
variables since they are algebraically equivalent to the separation relations (1).

In this paper we consider a special but important class of separation relation:
n∑

j=1

ajλ
n−j

i = Af (λi)μ
2
i + Bγ (λi), i = 1, . . . , n, (4)

2
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where A and B are two real constants to be specified later. Note that since the functions γ and
f do not depend on i the relations (4) can in fact be considered as n copies of a curve—the
so-called separation curve in the λ–μ plane. The Hamiltonian systems obtained from this
class of separation relations have been widely studied and are also known as Benenti systems.
Benenti systems constitute the simplest, but still very wide, class of all possible Stäckel
separable systems. It can be shown [12] that this class contains all quadratic in momenta
Stäckel separable systems since all other systems of this type are constructed from (4) by
appropriate generalized Stäckel transforms and related reciprocal transformations.

Let us now recall some established facts about Benenti systems. The relations (4) are
linear in the coefficients ai . Solving these relations with respect to ai we obtain

ai = AμT KiG(f )μ + BVi(γ ) ≡ Hi, i = 1, . . . , n, (5)

where we use the notation λ = (λ1, . . . , λn)
T and μ = (μ1, . . . , μn)

T . Functions Hi defined as
the right-hand-sides of the solution (5) can be (locally) interpreted as n quadratic in momenta μ

Hamiltonians on the phase space M = T ∗Q cotangent to a Riemannian manifold Q equipped
with the contravariant metric tensor G(f ) depending on the function f only. As mentioned
above, these Hamiltonians are in involution with respect to the canonical Poisson bracket on
T ∗Q. Moreover, they are separable in the sense of Hamilton–Jacobi theory since they by the
very definition satisfy Stäckel relations (1). The objects Ki in (5) can be interpreted as (1, 1)-
type Killing tensors on Q related to the family of metrics G(f ). The scalar functions Vi(γ )

depend only on the function γ and can be considered as separable potentials. Further, the
metric tensor G and all the Killing tensors Ki are diagonal in λ-variables. More specifically,
in λ-variables they attain the form

G(f ) = diag

(
f (λ1)

�1
, . . . ,

f (λn)

�n

)
with �i =

∏
j �=i

(λi − λj ) (6)

and

Ki = −diag

(
∂qi

∂λ1
, · · · , ∂qi

∂λn

)
i = 1, . . . , n

respectively. Here and below qi = qi(λ) are Viète polynomials (signed symmetric
polynomials) in λ:

qi(λ) = (−1)i
∑

1�s1<s2<...<si�n

λs1 . . . λsi
, i = 1, . . . , n (7)

that can also be considered as new coordinates on the Riemannian manifold Q (we will then
refer to them as Viète coordinates). Note that the Killing tensors do not depend on a particular
choice of f and γ .

Remark 1. The general n-time (simultaneous) solution for the Hamilton equations (3)
associated with all the Hamiltonians (5) attains the form

ti + ci = ± 1

2
√

A

n∑
r=1

∫
λn−i

r√
f (λr)

(∑n
j=1ajλ

n−j
r − Bγ (λr)

) dλr, i = 1, . . . , n. (8)

To see this it is enough to integrate the related Hamilton–Jacobi problem. Now, with every
Hamiltonian Hi in (5) we can associate the corresponding inverse Legendre mapping (fiber
derivartive) L−1

i : T ∗Q →TQ given in the natural coordinates (λ, μ) on T ∗Q and (λ, λti ) on
TQ respectively by

L−1
i (λ, μ) = (λ, 2AKiGμ) = (λ, λti ).

3
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Performing n corresponding Legendre transforms we obtain n Lagrangians Li : TQ →R

given explicitly by

Li(λ, λti ) = 1

4A
λT

ti
gK−1

i λti − BVi(γ ), (9)

where g = G−1 is the corresponding covariant metric tensor. These Lagrangians give rise to
n systems of Euler–Lagrange equations

Eti (Li) = 0, i = 1, . . . , n, (10)

where Eti is the Euler–Lagrange operator with respect to the independent variable ti .
By construction, the solutions (8) are also general solutions for all the Euler–Lagrange
equations (10). This means that for a particular i the general solution of the Euler–Lagrange
equation Eti (Li) = 0 is given by (8) where tj is constant for j �= i.

3. Dispersionless Killing systems of Benenti type

We have shown above that the separation relations (4) lead to separable Liouville systems
(Benenti systems) and we also presented its general solutions. It turns out that with the set of
Killing tensors Ki of any Benenti system we can also relate a set of first-order evolutionary
PDEs.

Definition 2 [13]. For any fixed j ∈ {1, . . . , n}, any of the following n systems of evolutionary
PDEs of the form

λti = KiK
−1
j λtj ≡ Zij (λ, λtj ), i = 1, . . . , n (11)

(where λ = (λ1, . . . , λn)
T ) with Ki being Killing tensors of a Benenti system (5) will be called

a dispersionless Killing system of Benenti type.

The chosen variable tj in (11) plays the role of a space variable while the remaining
variables ti should then be considered as evolution parameters (times). Equations (11)
constitute a set of n integrable dispersionless equations, belonging to the class of so-called
weakly nonlinear hydrodynamic-type systems, i.e. that are semi-Hamiltonian in the sense of
Tsarev [14, 15] and linearly degenerate [16], where the variables λi are the Riemann invariants
for the system. For a chosen j , the systems (11) can be considered as n vector fields Zij (with
a fixed j ) on some infinite-dimensional function space Mj of functions (λ1(tj ), . . . , λn(tj )).
It can be shown that

Proposition 3. On Mj (i.e. for a fixed j ) the vector fields Zij commute:

[Zij , Zkj ] = 0 i, k = 1, . . . , n.

The following proposition is crucial for our study:

Proposition 4. Every mutual solution λ(t1, . . . , tn) (given by (8)) of all Hamiltonian systems
(3) with Hamiltonians of Benenti type (5) is also a solution of all corresponding Killing system
in (11).

Proof. For the class of Benenti systems (5) the spatial part of (3) attains the form

λti = ∂Hi

∂μ
= 2AKiGμ, i = 1, . . . , n. (12)

So, for any fixed j ∈ {1, . . . , n} we can eliminate the momenta μ from (12). This yields (11).
�

4
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Thus, all the solutions (8) are also solutions of all n Killing systems in (11). Moreover,
we have

Theorem 5. The n-time general solution of all the Killing systems in (11) is given by

ti + ci =
n∑

r=1

∫
λn−i

r

ϕr(λr)
dλr, i = 1, . . . , n (13)

(where ϕr are arbitrary functions of one variable).

The proof of this statement can be found in [16]. Thus (13) indeed encompasses all
the solutions (8). We also see that any solution (13) can be written in the form (8) (with
appropriately chosen f, γ, aj , A and B) so that on a given surface of fixed values of all ai

(for example for zero-energy solutions, see below) with any such solution we can associate
infinitely many corresponding Stäckel systems (3) sharing the same solution.

Consider now solutions (8) as a specific class of solutions of (11). Since this class
of solutions—by construction—satisfies all the Euler–Lagrange equations (10) we can treat
these equations as additional bonds that these solutions satisfy. We can therefore use these
bonds to express some variables λi by other λs. Thus, within the class (8) of solutions of the
Killing system (11) we can perform a variable elimination (reparametrization) that turns (11)
into entirely new sets of evolutionary PDEs. Below we demonstrate that in some carefully
chosen cases this reparametrization turns systems (11) into systems with dispersion (soliton
hierarchies) with the solution (8) being also a solution of these new systems with dispersion.
Specifically, we will produce this way all coupled KdV hierarchies as well as new interesting
classes of their solutions: finite-gap and rational solutions. We will also demonstrate that our
hierarchies indeed are the well-known cKdV hierarchies obtained by Antonowicz and Fordy
through the energy-dependent Schrödinger spectral problem [2].

From now on we will assume that

f = λm, γ = λk, m, k ∈ Z (14)

so that (4) attains the form
n∑

j=1

ajλ
n−j

i = Aλm
i μ2

i + Bλk
i , i = 1, . . . , n. (15)

We will denote the metric associated with f = λm through (6) by G(m). It can be shown that
for m = 0, . . . , n the metric G(m) is of zero curvature while the metric G(n+1) has a non-zero
constant curvature. The separable potentials associated with γ = λk will be denoted by V

(k)
i .

The family of separable potentials V
(k)
i can be constructed recursively [17] by

V
(k+1)
i = V

(k)
i+1 − qiV

(k)
1 with V

(0)
i = δin, (16)

where we put V
(k)
i = 0 for i < 0 or i > n. The first potentials are trivial: V

(k)
i = δi,n−k for

k = 0, 1, . . . , n − 1. The first nontrivial potential is V
(n)
i = −qi, For k > n the potentials

V
(k)
i become complicated polynomial functions of λ.

The Lagrangians (9) for any specific choice of m and n are denoted as L
n,m,k
i so that

L
n,m,k
i = 1

4A
λT

ti
g(m)K−1

i λti − BV
(k)
i .

From now on we will choose the representation j = 1 in (11) so that the variable t1 plays
the role of the space variable. We denote therefore this variable as x: t1 = x. The case of
higher j is not discussed in this paper. Thus, we consider the Killing systems of the form

λti = Kiλx ≡ Zn
i (λ, λx), i = 1, . . . , n, (17)

5
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where the new upper index n in the ith vector field Zi denotes the number of its components;
note also that the second lower index in Z is now always 1 and can therefore be omitted. Also,
from now on we denote the Lagrangian L

n,m,k
1 simply as Ln,m,k (to avoid the unnecessary

index) so that

Ln,m,k = 1

4A
λT

x g(m)λx − BV
(k)

1 , i = 1, . . . , n. (18)

In order to perform the aforementioned elimination procedure we will first pass to Viète
coordinates (7). The Killing systems (17 ) are tensorial so in Viète coordinates they have the
form qtr = Kr(q)qx or, explicitly

d

dti
qj = (qj+i−1)x +

j−1∑
k=1

(qk(qj+i−k−1)x − qj+i−k−1(qk)x) ≡ (
Zn

i [q]
)j

, i, j = 1, . . . , n,

(19)

where qα = 0 as soon as α > n and
(
Zn

i [q]
)j

denotes the j th component of the vector field
Zn

i [q] ≡ Zn
i (q, qx) (here and below the symbol f [q] will denote a differential function of

q, that is a function depending on q and a finite number of its derivatives). One can see that(
Zn

i [q]
)j = (

Zn
j [q]

)i
for all i, j = 1, . . . , n. Further, in Viète coordinates the Lagrangian

(18) takes the form

Ln,m,k = Ln,m,k(q, qx) = 1

4A
qT

x g(m)qx − BV
(k)

1 , i = 1, . . . , n, (20)

where g
(m)
ij = V

(2n−m−i−j)

1 [1]. The Euler–Lagrange operator Et1 in (10) will be simply
denoted as E, so in Viète coordinates

E = (E1, . . . En), Ei = δ

δqi

.

Theorem 6. Lagrangian (20) satisfies the following symmetry relations:

(1) for α = 1, . . . , n − 1

Ei(L
n,m,k) = Ei−α(Ln,m+α,k−α), i = α + 1, . . . , n, (21)

which can also be written as

Ei(L
n,m,k) = Ei+α(Ln,m−α,k+α), i = 1, . . . , n − α. (22)

(2)

El(L
n,0,2n+σ ) = El+1(L

n+1,0,2n+σ+2), σ = 1, . . . , n − 1, l = σ + 1, . . . , n. (23)

The proof of this theorem can be found in [1]. This seemingly technical theorem
guarantees that the form of Euler–Lagrange equations survives the passage from the n-
component to (n+1)-component Killing system and hence it will be crucial for the construction
of soliton hierarchies below. The index σ will be related to the number of components of the
obtained soliton systems.

For our further considerations we will also need a hierarchy of infinite Killing systems

d

dti
qj = (qj+i−1)x +

j−1∑
k=1

(qk(qj+i−k−1)x − qj+i−k−1(qk)x) ≡ (
Z∞

i [q]
)j

, i, j = 1, . . . ∞

(24)

that is known as the universal hierarchy and has been considered in [10].

6
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4. Coupled KdV hierarchies and their solutions

We now briefly remind the reader our specific elimination procedure from [1] that turns the
dispersionless Killing systems (19) into cKdV hierarchies. More specifically, we show how
to produce s (with s ∈ N) N-component (N ∈ N) commuting vector fields (evolutionary
systems) by eliminating some variables from a set of Killing systems (19) with the help of
Euler–Lagrange equations for an appropriate Lagrangian Ln,m,k . The crucial for this procedure
is that if applied to s + 1 instead of s it yields the same set of s commuting vector fields plus
an extra vector field that commutes with the first s fields. This means that this procedure
leads in fact to an infinite hierarchy of commuting vector fields in the sense that for arbitrary
s we can produce first s vector fields from the same infinite sequence of commuting vector
fields. Moreover it turns out that in this way we produce vector fields with dispersion (soliton
systems), namely well-known coupled KdV hierarchies of Antonowicz and Fordy [2] (in a
different parametrization). Details are as follows.

Firstly, we choose A = 1 and B = −1. This specific choice of A and B is introduced
only for a smoother identification of our systems with the aforementioned cKdV hierarchies;
the elimination procedure works otherwise for arbitrary values of A and B. Consider all N
possible splittings

N = σ + α with σ ∈ {1, . . . , N} and α ∈ {0, . . . , N − 1}.
Every such splitting leads to a separate hierarchy. Consider also the Killing systems (19),
written in a shorthand way as

qtr = Zn
r [q1, . . . , qn], r = 1, . . . , n, (25)

where q = (q1, . . . qn)
T .

Remark 7. The first s = n − N + 1 equations in (25) are such that their first N components
coincide with the corresponding components of the infinite Killing hierarchy (24). The
remaining n − s equations in (25) are incomplete with respect to the infinite hierarchy (24)
since beginning with the flow s + 1 systems (24) contain at its first N components also the
variables qn+1, . . . , qn+N−1.

Let us now choose m = −α and k = 2n + N in (14) so that f = λ−α and γ = λ2n+N and
consider the last n − N Euler–Lagrange equations associated with Ln,−α,2n+N . One can show
[1] that they have the form

EN+1(L
n,−α,2n+N) ≡ 2qn + ϕ

(α)
n−N+1[q1, . . . , qn−1] = 0,

EN+2(L
n,−α,2n+N) ≡ 2qn−1 + ϕ

(α)
n−N [q1, . . . , qn−2] = 0,

...

En(L
n,−α,2n+N) ≡ 2qN+1 + ϕ

(α)
1 [q1, . . . , qN ] = 0.

(26)

Due to their structure, equations (26) can be explicitly solved with respect to the variables
qN+1, . . . , qn which yield qN+1, . . . , qn as some differential functions of q1, . . . , qN :

qN+1 = f
(α)
1 [q1, . . . , qN ]

...

qn = f
(α)
n−N+1 [q1, . . . , qN ] .

(27)

Naturally, the solutions (8) (with our choice of f and γ ) solve both (25) and (26). Thus, within
the class (8) of solutions (13), we can use the Euler–Lagrange equations (26) or rather their

7
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solved form (27) to successively express (eliminate) the variables qN+1, . . . , qn as differential
functions of q1, . . . , qN in (25). Plugging (27) into (25) produces n vector fields with N = σ +α

components:

qtr
= Z

n,N,α

r [q] r = 1, . . . , n, α ∈ {0, . . . , N − 1} (28)

(with q = (q1, . . . , qN)T ) . The higher components of (25) disappear after this elimination
within our class (8) of solutions. Moreover, since the first s equations in (25) are complete in
the sense of remark 7 it can be shown that

Z
n,N,α

r [q] = Z
N,α

r [q] r = 1, . . . , s,

meaning that the first s = n − N + 1 equations in (28) do not depend on n. Observe also that
equations (26) do not depend on n. Actually, if n increases to n′ the last n − N equations in
(26) with this new n′ will remain unaltered. This means that we can repeat this elimination
procedure by taking n′ = n+1 instead of n (so that s increases to s+1 and k = 2n+N increases
to 2(n+1)+N = k +2 while σ and α are kept unaltered). This new procedure (with n′ = n+1
instead of n) will therefore lead to a sequence of s + 1 autonomous N = (σ + α)-component
systems in which the first s systems will coincide with the corresponding systems obtained
from the previous procedure (with s). This way we can obtain arbitrary long sequences of the
same infinite set of commuting vector fields (soliton hierarchy):

qtr
= Z

N,α

r [q] r = 1, 2, . . . ∞, α ∈ {0, . . . , N − 1} . (29)

The second index α in (29) denotes different hierarchies. It can be shown [1] that the vector
fields Z

N,α

r commute[
Z

N,α

i , Z
N,α

j

] = 0 for any i, j ∈ N.

Note also that functions f
(α)
i in (27) depend on α so that indeed the procedure leads to N

different hierarchies. Now, the n functions λi(t1, . . . , tn) given implicitly by the system of
equations

ti + ci = ±1

2

n∑
r=1

∫
λ

n−i+α/2
r√

�N
r

dλr i = 1, . . . , n (30)

with

�N
r = λ2n+N

r +
n∑

j=1

ajλ
n−j
r =

2n+N∏
i=1

(λr − Ei)

are solutions of the first n equations of the N-component hierarchy (29) with N = σ + α.
The reason is that equations (30) are just equations (8) with f = λ−α and γ = λ2n+N so
they clearly solve all equations (28). Moreover, it can be shown that these solutions are zero
on qn+1, . . . , qn+N−1 expressed as differential functions of q1, . . . , qN through an appropriate
system (26) (with n′ = n + N − 1). This means that (30) indeed solve the first n equations
in (29).

Consider now the following infinite multi-Lagrangian ‘ladder’ of Euler–Lagrange
equations of the form,

E1(L
n,m+j−1,k−j+1) = E2(L

n,m+j−2,k−j+2) = · · · = En(L
n,m+j−n,k−j+n) (31)

with fixed m, k ∈ Z and with j = . . . ,−1, 0, 1, . . . (the multi-Lagrangian form of (31) is due
to theorem 6). Equations (26) that we use for variable elimination are then a part of this infinite
ladder with m = −α and k = 2n + σ + α and with j = 1, . . . , n. Equations (26) are the only

8



J. Phys. A: Math. Theor. 41 (2008) 485202 M Blaszak and K Marciniak

equations in the ladder (31) (for this specific choice of m and k) that allow for the elimination
described above. All other equations are complicated polynomial differential equations with
no obvious structure that do not allow for any elimination procedure. As a consequence,
there exist more solutions of the type (30) associated with all the Lagrangians Ln,β−α,2N−β for
β = 1, . . . , n − 1. However, one can show that for β = 2 the variable qn+N−1 is not zero on
these solutions so that these relations solve only first n − 1 equations in (29). More generally,
for any β > 1 the obtained solutions λi(t1, . . . , tn) will only satisfy first n − β + 1 equations
of the hierarchy (29). We can thus formulate the following theorem.

Theorem 8. For any β ∈ {0, . . . , n − 1} and any N = σ +α < n the n functions λi(t1, . . . , tn)

given implicitly by the system of equations

ti + ci = ±1

2

n∑
r=1

∫
λ

n−i+α/2−β/2
r√

�
(N,β)
r

dλr i = 1, . . . , n (32)

and with �
(N,β)
r given by

�(N,β)
r = λ2n+N−β

r +
n∑

j=1

ajλ
n−j
r =

2n+N−β∏
i=1

(λr − Ei)

are solutions of the first n−β + 1 (all n for β = 0, 1) equations of the N-component hierarchy
(29).

The variables t1 = x, t2, . . . , tn−β+1 in (32) are ‘dynamical times’ (evolution parameters)
of the hierarchy (29) while the variables tn−β+2, . . . , tn are just free parameters (i.e. the solutions
(32) do not solve flows higher than the flow number n − β + 1). Note also that, due to the
structure of (7), all n functions λi(t1, . . . , tn) obtained in (32) are necessary in order to compute
N functions qi(t1, . . . , tn−β+1) that solve (29). In the case N = 1 the solutions (32) are finite-
gap solutions for the KdV equation with the parameters Ei playing the role of endpoints of
forbidden zones. For β > 1 these solutions are up to our knowledge new. For N > 1 all the
solutions (32) are new.

Remark 9. For a fixed α ∈ {0, . . . , N − 1}, the following map,

ur = ∂V
(N,2N)

1

∂qN+1−r

, r = 1, . . . , N − α

ur = EN+1−r (L
N,N−α,2N), r = N − α + 1, . . . , N

(33)

(where V
(N,2N)

1 denotes the separable potential V
(2N)

1 in the dimension N) transforms the
hierarchy (29) to the hierarchy generated by the spectral problem(

λα∂2
x +

N∑
i=1

uiλ
N−i

)
� = λN�. (34)

This is the well-known spectral problem of Antonowicz and Fordy leading to N-component
cKdV hierarchies, one for each α ∈ {0, . . . , N − 1}. Thus, N hierarchies (29) are nothing else
as (reparametrized) N cKdV hierarchies from [2].

9
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5. Zero-energy solutions

Let us now investigate—on a few chosen examples—the nature of solutions (32) in the case
that all ai vanish (zero-energy solutions). In this case the solutions (32) can easily be integrated
yielding

ti + ci = ± 1

2 − 2i − σ

n∑
r=1

λ1−i−σ/2
r i = 1, . . . , n (35)

and contain therefore no β (are the same for all β = 0, . . . , n − 1) and no N except in
n = s + N − 1. Therefore, we obtain the following corollary:

Corollary 10. For any N = σ + α < n, the n functions λi(t1, . . . , tn) given implicitly by
the system of equations (35) are solutions of the first n equations of the N-component cKdV
hierarchy (29).

Naturally, the solutions (35) also solve (on the surface Hi = 0 for all i) all Stäckel systems
(5) for which f (λ)γ (λ) = λ2n+σ . Observe also that the solutions (35) solve all the Euler–
Lagrange equations for the infinite sequence of Lagrangians Ln,−α+j,2n+N−j where j ∈ Z. As
a consequence, the second part of the map (33) is zero on solutions (35). The reason for this
is that due to theorem 6 the expressions

EN+1−r (L
N,N−α,2N), r = N − α + 1, . . . , N

can be written as

Er(L
n,0,2n+σ ), r = n − α + 1, . . . , n

whereas all the above expressions are members of the sequence Ln,−α+j,2n+N−j , j ∈ Z, so
that they are zero on solutions (35). This implies that as soon as α > 0 the solutions (35)
in the representation of Antonowicz and Fordy reduce to the solutions of the corresponding
hierarchy with the same σ but with α = 0.

Example 1. We start with the case N = 1. We wish to obtain the first s = 3 flows in (29).
There is now only one splitting N = σ + α possible, namely σ = 1 and α = 0. This choice
leads to the usual KdV hierarchy. We have to take n = s + N − 1 = 3. The Killing systems
(25) have in this case the form

d

dt1

⎛
⎝q1

q2

q3

⎞
⎠ =

⎛
⎝q1,x

q2,x

q3,x

⎞
⎠ = Z3

1

d

dt2

⎛
⎝q1

q2

q3

⎞
⎠ =

⎛
⎝ q2,x

q3,x + q1q2,x − q2q1,x

q1q3,x − q3q1,x

⎞
⎠ = Z3

2 (36)

d

dt3

⎛
⎝q1

q2

q3

⎞
⎠ =

⎛
⎝ q3,x

q1q3,x − q3q1,x

q2q3,x − q3q2,x

⎞
⎠ = Z3

3 .

The Lagrangian Ln,−α,2n+σ+α = L3,0,7 is

L3,0,7 = 1
4

(
q2

1 − q2
)
q2

1,x − 1
2q1q1,xq2x + 1

2q1,xq3,x + 1
4q2

2,x + 2q2q3

− 3q2
1q3 − 3q1q

2
2 + 4q3

1q2 − q5
1

10
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and the Euler–Lagrange equations (26) attain the form

E2(L
3,0,7) ≡ 2q3 − 6q1q2 + 4q3

1 + 1
4q2

1,x + 1
2q1q1,xx − 1

2q2,xx = 0,

E3(L
3,0,7) ≡ 2q2 − 3q2

1 − 1
2q1,xx = 0.

Due to their structure, these equations can be solved with respect to q2, q3 yielding (27) of the
form

q2 = 1
4q1,xx + 3

2q2
1 , q3 = 1

16q1,xxxx + 5
4q1q1,xx + 5

8q2
1,x + 5

2q3
1 . (37)

Substituting (37) into the Killing systems (36) yields the three one-component flows (29):

q1,t1 = q1,x = Z
1,0
1

q1,t2 = 1
4q1,xxx + 3q1q1,x = Z

1,0
2 (38)

q1,t3 = 1
16q1,xxxxx + 5

2q1,xq1,xx + 5
4q1q1,xxx + 15

2 q2
1q1,x = Z

1,0
3 ,

which are just the first three flows of the KdV hierarchy. By taking larger s we can produce
an arbitrary number of flows from the KdV hierarchy. Now, according to corollary 10, the
formula (35) yields some specific solutions of all three flows in (38). Explicitly, this formula
reads (with x = t1, ci = 0 and + sign in (35))

x = −
3∑

i=1

zi = −ρ1

t2 = −1

3

3∑
i=1

z3
i = −1

3

(
ρ3

1 − 3ρ1ρ2 + 3ρ3
)

(39)

t3 = −1

5

3∑
i=1

z5
i = −1

5

(
ρ5

1 − 5(ρ1ρ2 − ρ3)
(
ρ2

1 − ρ2
))

,

where zi = λ
−1/2
i , i = 1, 2, 3, and where ρ1 = ∑3

i=1zi, ρ2 = z1z2+z1z3+z2z3 and ρ3 = z1z2z3

are elementary symmetric polynomials in zi . The right-hand sides of (39) follow from Newton
formulae:

n∑
i=1

zm
i =

∑
α1+2α2+...+nαn=m

(−1)a2+α4+α6+···m
(α1 + α2 + · · · + αn − 1)!

α1! . . . αn!
ρ

α1
1 ρ

α2
2 . . . ραn

n ,

m = 1, . . . , n (40)

that can easily be extended to the case m � n by taking larger n and putting all higher ρi equal
to zero. The system (39) can be solved explicitly yielding the 3-time solutions

ρ1 = −x

ρ2 = 15t3 + 2x5 − 15x2t2

5(x3 − 3t2)
(41)

ρ3 = −15t2x
3 − 45t2

2 + x6 + 45xt3

15(x3 − 3t2)
.

On the other hand, it is easy to see that

q1 =
(

ρ2

ρ3

)2

− 2
ρ1

ρ3
. (42)

11
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Plugging (41) into (42) we finally obtain a 3-time solution of the first three flows (38) of the
KdV hierarchy. It has a rather complicated, rational form:

q1(x, t2, t3) = −3
(
675t2

3 − 270t3x
5 + 2x10 + 675x4t2

2 − 1350xt3
2

)
(−15t2x3 − 45t2

2 + x6 + 45xt3
)2 . (43)

If we put t3 = 0 in the solution (43) we obtain a rational solution of the (first) KdV equation
as obtained for example in [9] (see formula (3.4) there). Our solution however encompasses
also a rational solution for the second KdV flow. By taking larger s we can in this way obtain
s-time solutions of first s flows of the KdV hierarchy. The map (33) is in this case trivial and
reads u1 = 2q1.

Example 2. Let us consider the two-field case: N = 2. There are now two splittings possible:
N = σ + α = 2 + 0 and N = σ + α = 1 + 1. We consider only the first two flows s = 2 (i.e.
only the first nontrivial flow) so that n = s + N − 1 = 3 as before and therefore the original
Killing systems are as before, i.e (36)—we just consider the first two of them. Let us first
consider the splitting N = σ + α = 2 + 0. The Lagrangian Ln,−α,2n+σ+α = L3,0,8 is

L3,0,8 = 1
4

(
q2

1 − q2
)
q2

1,x − 1
2q1q1,xq2x + 1

2q1,xq3,x + 1
4q2

2,x

+ q2
3 − 6q1q2q3 + 4q3q

3
1 − q3

2 + 6q2
2q2

1 − 5q2q
4
1 + q6

1

(note that its kinetic energy part is the same as in L3,0,7 above). The formulae (26) contain
only one equation that can be solved with respect to q3 yielding (27) of the form

q3 = 3q1q2 − 2q3
1 + 1

4q1,xx .

Substituting this into (25) (with s = 2 now) yields the first two flows of the first (i.e with
α = 0) 2-component cKdV hierarchy:

d

dt1

(
q1

q2

)
=

(
q1,x

q2,x

)
= Z

3,0
1

d

dt2

(
q1

q2

)
=

⎛
⎝ q2,x

2q2q1,x + 4q1q2,x − 6q2
1q1,x +

1

4
q1,xxx

⎞
⎠ = Z

3,0
2 .

(44)

The zero-energy solutions (35) (again with all ci = 0 and with the plus sign only) attain now
the form

x = −1

2

3∑
i=1

zi = −ρ1

t2 = −1

4

3∑
i=1

z2
i = −1

3

(
ρ3

1 − 3ρ1ρ2 + 3ρ3
)

(45)

t3 = −1

6

3∑
i=1

z3
i = −1

5

(
ρ5

1 − 5(ρ1ρ2 − ρ3)
(
ρ2

1 − ρ2
))

,

where ρi again denote elementary symmetric polynomials in zi but where now zi = λ−1
i .

Solving (45) yields the following 3-time solutions:

ρ1 = −2x ρ2 = 2x2 + 2t2 ρ3 = −4

3
x3 − 4xt2 − 2t3, (46)

where the variable t3 plays the role of a free parameter for equations (44). Moreover, we have

q1 = −ρ2

ρ3
, q2 = ρ1

ρ3
. (47)

12
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Plugging (46) into (47) we obtain the following solutions for (44):

q1(x, t2, t3) = 3(t2 + x2)

3t3 + 2x3 + 6xt2
, q2(x, t2, t3) = 3x

3t3 + 2x3 + 6xt2
. (48)

Note that corollary 10 implies that the functions (48) solve first n = 3 flows of the hierarchy
(29) with N = 2 and α = 0. In order to compute this third flow we just need to take s = 3 in
the elimination procedure. The result is

d

dt3

(
q1

q2

)
=

(
3q2q1,x + 3q1q2,x − 6q2

1q1,x + 1
4q1,xxx

6q1q2q1,x − 18q3
1q1,x + 6q2

1q2,x + 3
4q1q1,xxx + 3q2q2,x + 1

4q2,xxx

)
= Z

3,0
3 .

Let us finally pass to Antonowicz–Fordy variables. The map (33) attains the form

u1 = 2q1, u2 = 2q2 − 3q2
1

and it transforms both systems in (44) to the representation of Antonowicz and Fordy.
Explicitly

d

dt1

(
u1

u2

)
=

(
u1,x

u2,x

)
= Z

3,0
1 [u]

d
dt2

(
u1

u2

)
=

(
u2,x + 3

2u1u1,x

u2u1,x + 1
2u1u2,x + 1

4u1,xxx

)
= Z

3,0
2 [u].

(49)

In the u-variables the solutions (48) yield solutions for (49) and attain the form

u1(x, t2, t3) = 6(t2 + x2)

3t3 + 2x3 + 6xt2
, u2(x, t2, t3) = 3

(
6xt3 − 5x4 − 6x2t2 − 9t2

2

)
(3t3 + 2x3 + 6xt2)2

.

Example 3. Let us now consider the case N = σ + α = 1 + 1. Again, we look for the first
s = 2 flows in (29) with N = 2, a = 1. We have to take n = s + N − 1 = 3 and the rather
lengthy Lagrangian

Ln,−α,2n+σ+α = L3,−1,8 = − 1
4

(
q3

1 − 2q1q2 + q3
)
q2

1,x + 1
2

(
q2

1 − q2
)
q1,xq2,x

− 1
2q1q1,xq3,x − 1

4q1q
2
2,x + 1

2q2,xq3,x

+ q2
3 − 6q1q2q3 + 4q3q

3
1 − q3

2 + 6q2
2q2

1 − 5q2q
4
1 + q6

1

(the potential part is of course the same as in L3,0,8 above). The elimination equations (26)
yield again only one equation that being solved with respect to q3 reads

q3 = − 1
8q2

1,x − 2q3
1 + 3q1q2 − 1

4q1q1,xx + 1
4q2,xx .

Plugging this into the two first flows in (36) we obtain the first two flows of the second (i.e.
with α = 1) 2-field cKdV hierarchy:

d

dt1

(
q1

q2

)
=

(
q1,x

q2,x

)
= Z

3,1
1

d

dt2

(
q1

q2

)
=

(
q2,x

2q2q1,x + 4q1q2,x − 1
2q1,xq1,xx − 6q2

1q1,x − 1
4q1q1,xxx + 1

4q2,xxx

)
= Z

3,1
2

(50)

Now, the solutions (35) in this case attain precisely the form (39), or (41) in solved form, since
both n and σ are the same in both cases. However, (50) are two-component, so in this case we
need to express both q1 and q2 as functions of ρi ,

q1 =
(

ρ2

ρ3

)2

− 2
ρ1

ρ3
, q2 =

(
ρ1

ρ3

)2

− 2
ρ2

ρ2
3

. (51)

13
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Substituting (41) into (51) we finally arrive at a 3-time solution of (50) with t3 as a free
parameter:

q1(x, t2, t3) = −3
(
675t2

3 − 270t3x
5 + 2x10 + 675x4t2

2 − 1350xt3
2

)
(−15t2x3 − 45t2

2 + x6 + 45xt3
)2 ,

q2(x, t2, t3) = 45(x3 − 3t2)(x
5 + 15x2t2 − 30t3)(−15t2x3 − 45t2

2 + x6 + 45xt3
)2 . (52)

As in the previous example, the above solutions solve first n = 3 flows of this cKdV hierarchy
which means that they also solve the next flow in the hierarchy (with the dynamical time t3).
We will however not write it here. Finally, let us pass to the Antonowicz–Fordy representation.
The map (33) is now

u1 = 2q1, u2 = 2q2 − 3q2
1 − 1

2q1,xx

so that (50) in Antonowicz–Fordy variables reads

d

dt1

(
u1

u2

)
=

(
u1,x

u2,x

)
= Z

3,1
1 [u]

d

dt2

(
u1

u2

)
=

(
u2,x + 3

2u1u1,x + 1
4u1,xxx

u2u1,x + 1
2u1u2,x

)
= Z

3,1
2 [u].

(53)

In the u-variables the solutions (52) yield solutions for (53) and attain the form

u1(x, t2, t3) = −6
(
675t2

3 − 270t3x
5 + 2x10 + 675x4t2

2 − 1350xt3
2

)
(−15t2x3 − 45t2

2 + x6 + 45xt3
)2 , u2(x, t2, t3) = 0

which is nothing but the solution (43) of the first three flows of the KdV hierarchy (with
N = 1), in accordance with the observation at the beginning of this section.

Remark 11. It can be shown that our method yields rational solutions only for σ = 1 and
σ = 2. For σ > 2 our method leads to new implicit solutions of our cKdV hierarchies .

Example 4. Let us thus finally investigate the case N = 3 = σ + α = 3 + 0 that will lead to
implicit solutions. We take again s = 2 so that n = s + N − 1 = 4. The first s = 2 Killing
systems in (25) now have the form

d

dt1

⎛
⎜⎜⎝

q1

q2

q3

q4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

q1,x

q2,x

q3,x

q4,x

⎞
⎟⎟⎠ = Z4

1

d

dt2

⎛
⎜⎜⎝

q1

q2

q3

q4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

q2,x

q3,x + q1q2,x − q2q1,x

q4,x + q1q3,x − q3q1,x

q1q4,x − q4q1,x

⎞
⎟⎟⎠ = Z4

2 .

(54)

The Lagrangian Ln,−α,2n+N = L4,0,11 yields one elimination equation (26):

E4(L
4,0,11) = 2q4 + 12q2q

2
1 − 6q1q3 − 3q2

2 − 5q4
1 − 1

2q1,xx = 0.

Solving this with respect to q4 we obtain

q4 = −6q2q
2
1 + 3q1q3 + 3

2q2
2 − 5

2q4
1 + 1

4q1,xx .

14
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Substituting this into (54) yields two first flows of the 3-component cKdV hierarchy (29) with
α = 0,

d

dt1

⎛
⎝q1

q2

q3

⎞
⎠ =

⎛
⎝q1,x

q2,x

q3,x

⎞
⎠ = Z

3,0
1

d

dt2

⎛
⎝q1

q2

q3

⎞
⎠=

⎛
⎝ q2,x

q3,x + q1q2,x − q2q1,x

2q3q1,x+ 4q1q3,x− 6q2
1q2,x− 12q1q2q1,x+ 3q2q2,x+ 10q3

1q1,x+ 1
4q1,xxx

⎞
⎠=Z

3,0
2 .

(55)

The solutions (35) are now (again with all ci = 0 and with the plus sign only):

x = −1

3

4∑
i=1

z3
i = −1

3

(
ρ3

1 − 3ρ1ρ2 + 3ρ3
)

t2 = −1

5

4∑
i=1

z5
i = −1

5

(
ρ5

1 − 5(ρ1ρ2 − ρ3)
(
ρ2

1 − ρ2
))

(56)

t3 = −1

7

4∑
i=1

z7
i = −1

7

(
ρ7

1 − 7(ρ1ρ2 − ρ3)
((

ρ2
1 − ρ2

)2
+ ρ1ρ3

) − 7ρ4
(
ρ3

1 − 2ρ1ρ2 + ρ3
))

t4 = −1

9

4∑
i=1

z9
i = −1

9
P9

with zi = λ
−1/2
i where P9 is a complicated polynomial of degree nine in ρi that can be obtained

from the Newton formulae (40). This system cannot be algebraically solved with respect to
ρi . However, if we embed the system (56) in the system

α = −
5∑

i=1

zi = −ρ1

x = −1

3

5∑
i=1

z3
i = −1

3

(
ρ3

1 − 3ρ1ρ2 + 3ρ3
)

t2 = −1

5

5∑
i=1

z5
i = −1

5

(
ρ5

1 − 5(ρ1ρ2 − ρ3)
(
ρ2

1 − ρ2
))

+ 5ρ1ρ4 + 5ρ5

(57)

t3 = −1

7

5∑
i=1

z7
i = −1

7

(
ρ7

1 − 7(ρ1ρ2 − ρ3)
((

ρ2
1 − ρ2

)2
+ ρ1ρ3

)
− 7ρ4

(
ρ3

1 − 2ρ1ρ2 + ρ3
))

+ 7ρ2
1ρ5

t4 = −1

9

5∑
i=1

z9
i = −1

9
Q9

where α is a parameter, and where Q9 is a polynomial of degree nine in ρ1, . . . , ρ5 such that
Q9|ρ5=0 = P9, then obviously the solution of (57) with the condition ρ5 = 0 will yield the
solution for (56). The system (57) is algebraically solvable and yields

ρi = Ri(α, x, t2, t3, t4), (58)
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where Ri are complicated rational functions of their arguments. The polynomial equation
ρ5 = 0 yields then implicitly a (multivalued) function α = f (x, t2, t3, t4). Now, using the fact
that

q1 = −
(

ρ3

ρ4

)2

+ 2
ρ2

ρ4
, q2 =

(
ρ2

ρ4

)
− 2

ρ1ρ3

ρ2
4

+
2

ρ4
,

q3 = −
(
ρ4

1 + 2ρ2
2 − 4ρ2

1ρ2 + 4ρ1ρ3 − 4ρ4
)

ρ2
4

we arrive at an implicit solution of (55) of the form

ρ5(α, x, t2, t3, t4) = 0, qi = ri (α, x, t2, t3, t4) , i = 1, 2, 3

that is thus determined up to the implicitly expressed function α = f (x, t2, t3, t4). The
concrete formulae have been obtained with the help of Maple and are too complicated to
present them here. The map (33) does not simplify these solutions.

6. Conclusions

In this paper we presented a method of constructing coupled Korteweg–de Vries hierarchies
from the Benenti class of Stäckel separable systems. Our method allows for producing certain
classes of solutions of these hierarchies from solutions of corresponding Stäckel systems
(theorem 8 and corollary 10). For N = 1 and for β = 0 and β = 1 we obtain in general
finite-gap solutions of KdV. In the zero-energy case and for N = 1 we arrive at the known
formulae for rational solutions of KdV. It is well known that rational solutions of KdV originate
as asymptotics (in a long-wave limit, as the wavenumber k → 0) of multi-soliton solutions
[7]. We show here that these solutions are also asymptotic solutions of finite-gap solutions
in the zero-energy limit, i.e. when all ai are zero. It is not clear for us at the moment if our
method can also explicitly produce soliton solutions. Similar remarks apply to the case N > 1,
where our solutions are new. For σ > 2 all our solutions are implicit in the sense described in
example 4.

It is interesting to ask whether the obtained solutions are somehow related to some class
of symmetry reductions. Some hint is given in the case N = 1: the finite gap solutions (32)
for β = 0 and β = 1 for the KdV can be obtained from its stationary flows constructed with
the help of first two local Hamiltonian representations of the KdV hierarchy. This question is
beyond the scope of this paper but it certainly deserves a separate study.

It has to be stressed that our method is general in the sense that other separation relations
lead to other hierarchies like, for example, coupled Harry–Dym hierarchies as well as to some
specific solutions of these hierarchies. These issues will be studied in a separate paper.
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